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In this paper we apply the simplified spherical harmor8d() approximation to coupled electron-photon
transport problems in two-dimensional cylindrical geometry in the energy range from roughly 10 keV to 10
MeV. The SRy equations represent an asymptotic approximation that does not necessarily converge to the
exact transport solution dd— o, but can sometimes produce solutions that are much more accurate than
diffusion theory at a fraction of the cost of a full transport treatment. To our knowledg& Rgeapproxima-
tion has previously been applied only to neutron transport problems. We investigate the applicability of the
SPy method to satellite electronics shielding calculations. In addition to applying the approximation, we
generalize certain iterative convergence acceleration techniques originally developed for the one-dimensional
Sy (discrete ordinatgsequations, and apply them to the two-dimensi@®B|, equations. We present numerical
comparisons with Monte Carlo calculations for the purpose of examining both the accuracy $Pthe
approximation and the computational efficiency of our solution techniq®4€63-651X98)04505-X

PACS numbegs): 02.70—c, 95.30.Jx

I. PURPOSE far beyond the reach of existing computers, but diffusion
theory was not always adequate for nuclear reactor analysis.
The purpose of this paper is investigate the applicabilityln view of this, Gelbard developed a heuristic simplification
of the simplified spherical harmonic approximatiph] to  of the Py equations, which he called the simplifieg, equa-
two-dimensional (2D) coupled electron-photon transport tions[1], with the intent that they yield greater accuracy than
problems in the energy range from approximately 10 keV tddiffusion theory at a computational cost far less than Ryl
10 MeV. We focus on calculations related to the shielding ofth€ory. The method was originally applied to neutron trans-
satellite electronics from geomagnetically trapped electrond20rt Problems, and was observed to give precisely the type of
In addition, we investigate the applicability of certain nu- accuracy that Gelbard had hoped for. Since they represented
merical solution techniques to tf@P, equations that were & heuristic simplification to they equations, thé Py equa-

- . : tions were not expected to yield the exact transport equation
originally developed for 108, (discrete ordinatgg2] trans- . s : e
port calculations. in the limit asN—«, and they did not do so. The initial

derivation of theS P equations was neither mathematically
rigorous nor physically intuitive. Thus even though Gelbard
Il. BACKGROUND was able to demonstrate that t8&, equations were useful,
. . . the lack of a sound theoretical foundation has undoubtedly
The standard spherical harmonicRy equationg2] have acted as an obstruction to the widespread use of these equa-

been useq to approxim.ate the Bpltzr_nan_n transport equati%ns_ However, it has recently been shown by Larseal.
for over fifty years. This approximation is based upon the !

. that the SPy equations can be derived from the transport
assumption that the_angular dependenc_e of the angular fI'“g(quation via a formal asymptotic expansion related to the
can be represented in a truncated spherical harmonic EXPaftysion limit [3,4]. Thus a rigorous theoretical basis for the
sion. This expansion is substituted into the transport equas P, equations now exists

N .

tion, and angular moments are taken with respect to eac Some insight into the accuracy of Py approximation

spherical harmonic function. This results in a finite system of . S . :
equations for the angular moments of the angular flux. The?" be gained by considering some of its properties.

index “N” in Py denotes the order of the spherical har-(1) The SP, andP, equations are completely equivalent in

monic expansion. In general, &—o, the solution of the all geometries. IN>1, there is no equivalence between
Py equations converges to the solution of the transport equa- the SPy and Py equations in multidimensional geom-
tion. In multidimensional problems, thBy equations are etries.

quite complex and have a large number of unknowns. Fo(2) The SP, equations and thBy equations are completely
instance, in multidimensional calculations, the number of an- equivalent in 1D slab geometry.

gular unknowns(moments is of orderN?. The number of  (3) The multidimensionaB Py equations will exactly yield
unknoyvns_assomated with high expansion ord_ers is particu-  any Py, solution that has a 1D slab geometry dependence
larly significant for electron transport calculations because regardless of the orientation of that dependence with re-

electron scattering is highly anisotropic and thus often re- spect to the multidimensional coordinate system.
quires high order flux and cross section expansions, Bg.,

to P15. The multidimensionalPy method can be prohibi- The first property ensures that the diffusion limit is embed-

tively expensive with such high expansion orders in terms ofled within theS Py equations. This follows from the fact that

both memory and CPU time. the steady-statd®; equations are equivalent to diffusion
In the early 1960s, multidimensionBj calculations were theory under the assumption of isotropic scattering. The sec-
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ond and third properties suggest thallifs sufficiently large, fects[2]. The SP, equations are similar to the equations
the multidimensiona$ P equations should be very accurate in that they are elliptic and rotationally invariant, and thus do
whenever the transport solution is “locally 1D,” i.e., when- not exhibit ray effects.

ever the angular flux solution at each point in space has Since theSPy equations are equivalent to tiRg, equa-
approximately 1D angular and spatial dependencies. For irfions in 1D slab geometry, and they_; equations are
stance, suppose that at each point in space, denotég,by €duivalent to theSy equations in 1D slab geometry, it fol-
we can define a direction vector, denoted iy, such that lows that theSPy_, equations are also equivalent to the
the angular dependence of the angular flux is azimuthallgauations in 1D slab geometry. In fact, the “canonical
symmetric abouti,, and the spatial dependence of the an-form” of the SPN_,l equations that we solve reduces exactly
gular flux does not vary in any direction perpendicularigo ~ [© the even-paritySy equations[6] in 1D slab geometry.
Then the solution is locally 1D. Furthermore, if the vedlgr Furthermore, the basic |t9rat|v9 solution technique th.at we
is constant throughout space, the solution is globally 1puse to solve ou Py equations is the standard source itera-

Pomraning has recently shown that 8By, equations can be tion techniqud 2] routinely used to solve thg equations in

derived both variationally and asvmptotically under the as_aII geometries. The iterative convergence acceleration tech-
erives iy ymptoticatly unde nigues that we apply to th8 Py equations are 2D generali-
sumption that the flux is locally 1[D05]. This derivation re-

. - . zations of theP, diffusion-synthetic acceleration technique
quires more rgstnctwe assumptions than thgt of Lamen.d. (P4-DSA) [7] and the angular multigrid acceleration tech-
[3], but it prowdps a much clearer physical interpretation Ofnique(AMG) [8]. Although P,-DSA is very effective in 1D
the SRy approximation. _ _ Sy calculations, it has recently been shown to be unstable

Some insight into the relative cost of & approxima-  \yhen applied to the 23, equations with highly anisotropic
tion can be gained by noting that the numberRy§ un-  gcattering[9]. Since P,-DSA is a fundamental part of the
knowns in multidimensions is of ordé&? whereas the num- gverall AMG algorithm, it follows that the AMG method
ber of SPy unknowns in multidimensions is of ordéd.  will also be unstable under similar conditions. These results
Thus the potential exists for tremendous computational savare particularly disturbing for electron transport calculations
ings whenN is large. As previously noted, large valudsare  because electron scattering is indeed highly forward peaked,
often required in electron transport calculations because aind convergence acceleration is generally needed for elec-
the highly anisotropic character of electron scattering. tron transport calculations.

It has recently been shown that tB&, equations can be We have performed a Fourier analysis that indicates that
placed in a so-called “canonical” forrf8,4] that consists of ~the P;-DSA method is as effective for the 2BP equations
(N+1)/2 diffusion equations coupled at each point in spaces itis for the 105y equations. We do not present the details
and energy only through a scattering source. These equatiofé this analysis here because it is quite lengthy and it is

can be efficiently solved by iterating upon this source couPresented elsewhef&0]. However, we do present computa-
pling in conjunction with convergence acceleration tech-tional results that demonstrate thaoth the P,-DSA and

niques. The convergence acceleration techniques that we MG techniques are as effective for the 2P equations
ploy are based upon the use of diffusion approximations t@shthey are for the 1'?N ?]nd Sn egranons. This 'i a some-
estimate iterative errors. The advantage of this approach ¥ at surprising result that enables us to make 8i

that eachSPy iteration consists of solvingN+ 1)/2 inde method even more efficient for multidimensional calcula-
N = .
tions.

pendent diffusion equations. The numerical discretization In this paper we apply thé P, approximation to coupled

agd soluélot? techmqufefhfor q(j|ffu3|on dequatlo?sdgffre .h'ghlyelectron—photon transport problems related to shielding satel-
advanced because ot the widespread use ot dilusIon aRge ojectronics from geomagnetically trapped electrons. One
proximations in physics and engineering. Discretization an

. . i ould expect that th& Py approximation would do well in
solution techniques for they equations are much less ad- s regime because the exteriors of the satellites are bathed

vanced. o ~in a uniform isotropic flux of electrons, leading to angular
Thg diffusion-based iterative convergence acceleratiof,x distributions that are approximately locally 1D.
techniques that we apply to tt#®Py equations are 2D gen-  The remainder of this paper is organized as follows. First,

eralizations of techniques originally developed for the3pP  we describe the Boltzmann transport equations for coupled
equations. TheSy approximation is currently the most electron-photon transport, and the cross section data that we
widely used numerical technique for solving the transportuse in ourSPy calculations. Next, we describe tH&Py
equation[2]. Like the Py method, theSy method converges equations that we solve. This is followed by a description of
to the exact transport solution &—o0. In 1D slab geom- the source iteration technique and the convergence accelera-
etry, theSy equations with Gauss quadrature are equivalention techniques that we use to solve tBd, equations.

to the Py_4 equations. They are also nearly equivalent inComputational results are presented next. In particular, we
other 1D geometries. However, in multidimensional geom-compare thes Py and Monte Carlo methods in terms of both
etries, theSy and Py_4 approximations fundamentally dif- accuracy and computational cost. After some preliminary 1D
fer. In particular, thePy equations yield an elliptic approxi- calculations, calculations are carried out in 2D cylindrical
mation for the streaming operator and preserve the rotationgleometry. We do not compare ti§Py method with theP,
invariance of the transport operator, while tBg equations and Sy methods because computer codes that can perform
yield a hyperbolic approximation for the streaming operatorcoupled electron-photon 28, andPy calculations in cylin-

and do not preserve this invariance. As a resgjtsolutions  drical geometry(if they exis) are not generally available to
can sometimes exhibit nonphysical oscillations called ray efthe scientific community. On the other hand, Monte Carlo



57 SIMPLIFIED SPHERICAL HARMONIC METHOD F@®. .. 6163

codes, which represent the accepted standard for multidicy—1 Mev 1Y), apﬂp(F,E’aE,ﬁ’-ﬁ) is the photon
mensional coupled electron-photon transport calculationsy,
are available from several sources. For instance, we have _; o L, S e
used a code distributed by Sandia National Laborattigs ~ (CM ~ MeV=sr), o p(F,E'—E,17-Q) is the electron

Finally, our computational results are followed by conclu-0  photon  differential  scattering ~ cross  section

photon differential  scattering cross  section

sions and recommendations for future work. (cm™*MeV ™ *sr ), Ry(F,E) is the electron restricted stop-
ping power. Includes only energy losses due to soft inelastic
lIl. COUPLED ELECTRON-PHOTON interactions (cm' MeV), andQ(F,E) is the distributed an-
TRANSPORT EQUATIONS gular source(in particles crds™* MeV 1), and subscripte

andp denote electron and photons, respectively.
The fundamental model of particle transport for a system The electron inelastic interactior®oth collisional and
of electrons and photons is given by a Boltzmann-Fokkeryagiative are divided into two classes: “catastrophic” inter-
Planck(BFP) equation[12] for electrons and the Boltzmann ,¢ions that result in large energy losses and directional

equation[2] for photons. The particular version of BFP cnanges and “soft” interactions that result in small energy

dditional " lowina-d " W for t tbsses and directional changes. All catastrophic interactions
an additional continuous-siowing-down term. We reler 10,4 ihe girectional changes due to soft interactions are

th!s electron equation as the Boltzmann-CSD equation. Co reated with the Boltzmann operator. All energy losses due to
pling occurs between the electron and photon equations due

to the physical fact that electrons generate photons in theﬁOft interactions are treated with the continuous-slowing-

interaction with the host medium, and photons in turn gend0Wn (CSD) operator, i.e., the energy derivative term ap-

é)earing in Eq.(1). This operator continuously slows down

assume that there are no external electric or magnetic fieldgarticles at a rate given by the restricted stopping poRer,
and the density of transporting particles is much less than th&n€ Stopping power is “restricted” in the sense that it in-
density of target atoms. The steady-state electron and photdiides only contributions from soft interactions.

equations are given as The CEPXS code_[13] was used to generatg electron and
photon cross-section data for o8P, calculations.CEPXS
ﬁ-ﬁw (f.E Q)Jrat (FE) ol F,E ﬁ) produces a special “pseudo” cross sectidd] that effec-
e emire tively lumps the CSD operator together with the previously

N R S, = I defined electron to electron differential scattering cross sec-
~Jo dE 4WdQ Te ol E = EQ7-0) (M. E".Q7) tion, o5 .. Thus, the computer code that we developed was
designed to solve th& PRy analog of the following pure

* L Bol i for the el h :
n f dE,f dQ,UpHe(F,E,HE,Q’ Q) oltzmann equations for the electrons and photons
0 41

.9 - S G rEG R 8
X pl(FE, Q)+ == [Re(F,E) (7. E. Q)] Q-Vyer.E D)+ 0ol E) el T E. Q)
+QuF.EQ), o -] 0E ] 0 rEEd G
Q.lep(F,E,Q)+atp(F,E)¢p(F,E,Q) +f dE’ dQ’O'pg,e(F,E,—?E,dhﬁ)
0 4
= dE’f dQ' o, (F,E'—E,Q"- Q)¢ (7,E',Q’ L=, L
J, dE ], a0y e AGULSES X (7, E' 01+ Qu(T,E, D), ®
+f dE’f dQ' oo o(F,E'—E,Q"- Q) o ) i
0 A Q- V(7 E, Q) + o (F,E) (T, E, Q)
X (B ) Qo E.0) @ — [Tae | da’ FE'—E, Q- Q)y(F.E Q'
- 4r opp(ME —=EQ"-Q)ihy(F,E, Q)

where w(F,E,ﬁ) is the angular flux (in particles

Cm‘2 S_l '\/|ev_1)7 Q is the particle direCtiOnO't(F,—)E) |§ the + fwd E,f dﬁUer(F,E/HE,ﬁ, . d)lﬁe(F,E, ’d/)
total cross sectiofin cm™1), ando?  (7,E'—E,Q’-Q) is 0 ™

the electron to electron differential scattering and production .

cross section, wherg’ denotes the initial particle energy, +Qp(r

Q' denotes the initial particle directiolt, denotes the final

particle direction, and} denotes the final direction. This However, it is important to recognize that the actual electron
term does not include energy losses due to soft inelastic inequation being solved includes the CSD term. The CSD term
teractions, which are treated by the CSD operatos simply “embedded” within the electron to electron differ-
(cm™*MeV~tsr). In addition, o, .(7,E'—E,Q'-Q) is  ential scattering cross section in E@) via the cEPxsdata.

the photon to electron differential scattering cross sectiohis is why we user,_.. in Eq. (3) rather thanoy_ .

4
(F.E.Q). @
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IV. MULTIGROUP SPy EQUATIONS ¢+(1U’m) - %[lp(ﬂ*m) + (= um ], (1)

The SPy equations that we solve are discretized in energy - L .
using the standard multigroup approximati@j. A group is P (um)=z[¢(pm) — (= um) 10, (12

associated with both an interval of energies and a partICI$vhereﬁ is a unit vector directed along the 1D spatial axis.

type. .For instance, in a typic_:al calculation, groups 1 througt‘Ne henceforth suppress use of the term “analog” when re-
50 might represent 50 contiguous energy intervals for elec;

trons, while groups 51 through 80 might represent 30 Confernng to the even-parity and odd-parity fluxlike and source-

: . : Jike quantities in theSPy equations.
tiguous energy intervals for photons. The multigroup angular The canonicalSP, equations are spatially discretized

flux for groupg is denoted by, , and represents the integral

of the angular flux over the energy interval associated wit with a standard bilinear-continuous finite element treatment

groupg. Thecepxscode provides data in a multigroup Leg_h[16] to obtain a set of matrix equations amenable to compu-

endre format. In particularceEpxs provides the total cross tational solution. The term,V - (Qmg/ a1g) On the right side

section for each group together with Legendre moments off Ed- (5) would appear to require special attention because
cross sections for transfers between groups. These data atéch & term does not usually appear in standard diffusion
sufficient to completely describe the interaction of electrongduations. However, the problems that we consider do not
and photons with matter. have distributed sources. In this case, it can be shown that

The canonical multigrouf Py equationg4,15] are given Q;g is composed of a linear combination* of%even—parity
as flux gradients, and consequently thaLmV(Q;g/otg)
has the same spatial discretization as the standard term
— 2V - (Log) Vg On the left side of Eq(S).

Because theSPy equations are self-adjoint, the finite-
element treatment yields symmetric positive definite coeffi-
cient matrices. Efficient, robust numerical methods exist for
the solution of such matrix equations. In particular, we use
the conjugate-gradient method preconditioned with incom-
plete Cholesky decompositiofCCG) [17] and the black-
box multigrid method(BBMG) [18] in conjunction with
source iteration to solve the discretiz8dP, equations.

- 1 . -
2 —
—pmV- ; V'/’r;g—i_ O'tglr//rtng_ Qr;g_ HmV -
9

ng)
O’Ig !

m=1,(N+1)/2, g=1G (5)
LR N
d/mg_ O V(v//mg—’_ O ng,

m=1,N+1)/2, g=1G, (6)

V. SOURCE ITERATION

Our multigroupSPy equations can be solved iteratively
by the source iteratiofSI) method. This technique is actu-
ally quite simple. Note that all coupling in group and direc-
tion occur in the scattering sources on the right sides of Egs.
(5) and (6). In its simplest possible form, source iteration

()

™

j=1n=13, proceeds by using the fluxes from the previous iteration to
calculate new scattering sources, and then solving Exjs.
(N+1)/2 . . )
N and (6) to obtain the next flux iterates. The process is then
$ng=2 m§=:1 Pa(sm) YmgWm, N even, (9 repeated until convergence is achieved. The previous iterate
fluxes for the first iteration are generally assumed to be zero
(N+1)/2 unless a better guess is available.
Jgngzz E Po(im) lzr;ng: n odd, (10) In a multigroup calculation, the source iteration process is
m=1 decomposed into two nested iterations referred to as the in-

ner and outer iterations. The outer iterations are character-
ized by iterations on the scattering sources resulting from
intergroup transfers, while the inner iterations are character-

and wherey* and tz* are theS Py analogs of the even- and
odd-parity angular fluxesn is the angular indexy, is the

mth Gauss quadrature cosing,, is the mth Gauss quadra-
ture weight,P,(u) is the Legendre polynomial of degree
g is the energy group indeX is an odd integerg, is the
analog angular flux moment;,, ;.4 is thenth Legendre mo-
ment of the cross section for “scattering” from groypo

ized by iterations on the scattering sources resulting from
within-group transfers. As one would expect from the no-
menclature, the inner source iteration is nested within the
outer source iteration.

An outer source iteration begins by using the latest flux

groupg, q,, andd,, are the analogs of the even- and odd-jterates to calculate the intergroup scattering source for group
parity angular distributed sources, respectively, and all othet. Next the inner source iteration for group 1 begins by using
quantities are as previously defined. Note that in the multithe latest iterate for the group 1 flux to calculate the within-
group approximation, “scattering” cross sections may group scattering source for group 1. The inner iteration for
physically represent particle production as well as true scatgroup 1 is completed by solving the equations for the group

tering.

For the case of 1D slab geometry, t8®&, equations be-
come equivalent to the even-parly, ; equations and these
guantities can be related to the angular fliaas follows:

1 fluxes. The inner iteration process is then repeated until
convergence of the within-group scattering source is
achieved for group 1. The outer iteration is completed by
performing all of the steps described above for each remain-
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ing group in succession. The outer iterations are repeated The stopping criteria for the diffusion iterations depend
(together with the inner iterations nested within thamtil upon the solver being used. For instance, the ICCG solver
the intergroup scattering sources converge for all of thauses a stopping criterion based upon the relative change of
groups. the solution vector together with the norm of the residual

It is useful to consider a formal representation of the innerrelative to the norm of the source vector. Specifically, let us
source iteration process for a single group. In particular, express the equations being solved as follows:

_va iv¢+(|+1)+ lp+(|+1> Cio=b, (19

where C is the coefficient matrixy is the solution vector,

) Qm(I andb is the source vector. The ICCG iterations are termi-
=Qm— =V o | nated when
1(N+1)/2 (13) [o =5
m: b 1 —
] 20
'Zr;(H—l) p Vl/l+<|+1)+ Q (I) and
—1(N= Ico Db
1(N=1)/2, (14) A N (21)
NJ2 o
1+1) _ I+1
bh )_Zmz:l Polsm¥m YWy for n even, (15 \yhere “||I” denotes the Euclidean vector norrh,denotes
the ICCG iteration index, and denotes the user-specified
N/2 error tolerance.
H+D =9 =) j-*Dw  for n odd, (16 The black-box multigrid solver has its own stopping cri-
on mzzl nl tem) ¥ m (18 teria, but we do not use it. Rather we simply have the BBMG

routine perform 5-V cycles and then accept the solution as
A N-1 (i1 o+ converged. This seems to be the most efficient way to use the
nFU= > (2n+1)Py(umondl V40, (17 BBMG solver for the class of problems we considered.
n=02 The inner source iterations are terminated when the Eu-
N clidean norm of the change in the zeroth flux moments di-
2 (1+1) S(1+1), = vided by the Euclidean norm of the zeroth flux moments is
Qn +n§13 (2n+1)Pp(pm)ondy ' +0m, (18 less than a user-specified error tolerance. Specifically, termi-
nation occurs when
wherel is the inner iteration index, and where the group
S T . (I+1)_ 4(hj2\ 12
indices have been suppressed for simplicity and the inter- 3yl ok dokl
group sources have been hidden within the inhomogeneous 2k|¢gk+1>|2 7,
sources. Let us now review the inner iteration process in
detail. The iteration process begins with even-parity and oddwherek is the spatial index.
parity angular fluxes from the previous iteratigstep I). The outer source iterations are terminated using a varia-
These flux iterates are used together with E45)—(18) to  tjon on the condition given in Eq22):
calculate new even-parity and odd-parity sour€@$(" and |
(j;]('), respectively. The inner iteration process proceeds by 3y ¢gk+gl)_ 0kg|2 <T q=1G 23)
solving Eq.(13) for the even-parity angular fluxes at step Sy ¢8k51)|2 g '
+1 while keeping the scattering sources on the right side of
that equation fixed at stdp Note that this step requires the where¢'0kg denotes the final zeroth flux moment for space-
solution of N+ 1)/2 independent diffusion equations. The pointk and groupg calculated during outer iteratidn
inner iteration at step+1 is completed by using the even-  In general, the diffusion iteration convergence criterion is
parity fluxes at step+ 1 and the odd-parity sources at step made more stringent than the inner source iteration criterion,
together with Eq(14) to obtain the odd-parity angular fluxes and the inner source iteration convergence criterion is made
at stepl + 1. Note that Eq(14) constitutes an explicit expres- more stringent than the outer source iteration criterion. Op-
sion for the odd-parity flux, i.e., one need not solve a differ-timal stopping criteria are difficult to define. We generally
ential equation. Rather one need only take a gradient of thesed tolerances of 16, 10 °, and 104, respectively, for
even-parity flux. the diffusion iterations, inner source iterations, and outer
We solve each of the discrete diffusion equations associsource iterations. Of course, there was no explicit conver-
ated with the discrete version of E¢L3) using either the gence tolerance for the diffusion iterations when the BBMG
incomplete-Cholesky conjugate-gradieiftCCG) method method was used to solve EG.3).
[17] or the black-box multigridBBMG) method[18]. Thus The outer iterations generally converge quite quickly for
there are iterations nested within the inner source iterationsoupled electron-photon transport calculations. In fact, be-
We refer to these iterations as diffusion iterations. cause of simplifications to the physics for electron produc-

(22
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tion by photons(discussed in Sec. V)i all of the calcula- (1) The low-rank operator must be inexpensive to invert rela-

tions presented in this paper were guaranteed to converge in tive to the cost of inverting the full-rank operator.

one outer source iteration. (2) The low-rank operator must attenuate the error modes,
Inner iterations can be very slow to converge. This is Wwhich are not well attenuated by the basic iteration

particularly so for the lower-energy electron groups. Thus Scheme. ) )

acceleration of the inner source iteration convergence i§3) The low-rank operator must not excessively amplify the

highly desirable for these groups. error modes that are well attenuated by the basic iteration
scheme.
VI. CONVERGENCE ACCELERATION In P,-diffusion synthetic acceleratidit], the basic itera-

We use two related acceleration techniaues to accelera{ion scheme is source iteration, and the low-rank operator is
. ) . N d ) fie P, operator. The projection and interpolation operators
the inner iterations of electronB; diffusion-synthetic accel-

. o are defined in terms d?; andP,; Legendre moments of the
_?_Lat'opn PDERSA) E;] gnd thebang_ultar mutltlgrld meth&/ﬂ]. id angular flux. The effectiveness of an iteration scheme is usu-
Gih é n f TTD ODS:a.n . eb n&gzrgre 'eth' a?h a 0'|g” ally measured in terms of its spectral radius. The spectral
metnoa. in fact, =, - IS imbedded within the anguiar -, ;g represents the asymptotic error reduction factor, i.e.,
multigrid method. We will explain what we mean by this

. e . . the factor by which any norm of the error is reduced per
shortly. Let us begin a description of synthetic aCCeIerat'oqteration after “sufficiently many” iterations. In general, the
by considering the following general matrix problem '

spectral radius values quoted in this paper for various meth-
Hf=q (24) ods will correspond to spatially infinite homogeneous prob-
' lems with no spatial discretization and in some cases, no

which may be solved iteratively by splitting the coefficient angular discretization. The spectral radii observed in realistic

matrix discretized computations are usually comparable to the ide-
alized model values as long as one is careful to consistently
H=A-B (25  discretize the low-order operators relative to the high-order
operator[19].
and specifying an iteration scheme as follows: Source iteration has an infinite-medium spectral radius

equal to the scattering ratic=oq/0,. The spectral radius

in any finite-medium problem is bounded from above by the
infinite-medium value, and approaches the infinite-medium
value as the optical thickness of the finite domain increases.
In the worst case, the infinite-medium spectral radius is

firD=A"1Bf+A 1q. (26)

By manipulating Eqs(24), (25), and(26), it may be shown
that the exact error iffi at iteration stepl(+ 1) satisfies

HeltD=p(+1) (27)  unity. This corresponds to pure scatter with no removal, i.e.,
o= gg. Electron scattering generally leads to spectral radii
where the error is defined by for the low-energy groups that are very near unity. Thus
source iteration is inefficient for these electron groups. If the
el D=f—fl*D (28 scattering cross-section expansions can be accurately trun-

cated at theP, level, P;-DSA reduces the spectral radius to
approximately 0.28. This is a dramatic improvement for
simply solving one additional diffusion equation per group.
On the other hand, if higher expansion orders must be used,
We can obtain the exact error fif 1) by solving Eq.(27). the spectral radius witR,-DSA is given byB=o,/0y _[20].
However, Eq(27) is just as difficult to solve as the original Unfortunately, as the scatterlng becomes increasingly for-
problem, Eq(24). The main idea of synthetic acceleration is Ward peaked,3 approaches unity8]. Thus P;-DSA be-
to obtain an estimate of the error it +% by solving Eq. comes mef_fe_ctlve in the forward_—peaked scattering limit.
(27) with a low-rank approximation t¢i. The accelerated '!'h|s deficiency can be remedied by using an_angular mul-
iteration scheme then takes the form tigrid method that is in some sense a generalization of the
P,-DSA method. For instance, the;-DSA method can be

and the residual is defined as

ri*D=q-Hfl*, (29)

flr12=- A-1Bf(h 4 A~ 1q, (30) thought of as a two-grid method. The “fine grid” is the
transport operatofor in our case, th& Py equationg and
r+i2=q—Hfl+1/2), (31) the “coarse grid” is theP, operator. The central theme of a
multigrid scheme is to have a hierarchy of increasingly
c+1/2) = H[lPr(' 1) (32 coarse grids. Each coarse grid is used to calculate an estimate
of the error on the grid above it. For instance, let us assume
flrD =1+ L Tc(+1/2) (33)  that the angular multigrid method starts with &5 ap-

proximation on the “fine grid.” A source iteration is per-
whereH, is a low-rank operator? is a projection operator formed on this grid to obtain an estimate of the solution.
that maps the full-rank residual to the low-rank spacelpf =~ Then theSP; 5 residuals are calculated and projected onto the
and T is an interpolation operator that maps the low-ranknext coarse grid, which consists of 8iP; approximation. A
correction to the full-rank space of. source iteration is performed on ti&P, grid to obtain an
Synthetic acceleration is effective if the following three estimate of the error on th&P; 5 grid. Then theS P, residual
conditions are met. is calculated and projected onto &i; grid. A source itera-
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tion is performed on th& P; grid to obtain an estimate of the is accepted by the scientific community as an accurate state-
error on theSP;, grid. The SP; residual is then calculated of-the-art code for coupled electron-photon transport calcu-
and projected onto aBP; grid. TheSP; equations are then lations. Thus it is appropriate that it serve as our benchmark.
solved to obtain an estimate of the error on ®B; grid.  For each problem we investigate the accuracy of the numeri-
This SP, estimate is then interpolated onto t8&; grid and  cal solutions, the computational efficiency of the methods,
added to the&s P; iterate to obtain an improvedP; estimate  and provide a brief discussion of results. We have compared
for the error in theSP; grid. This SP; estimate is then in- our SPy scheme with an unbiased Monte Carlo method. The
terpolated onto th&P; grid and added to thE P, iterate to  CYLTRAN code can be biased to more efficiently perform
obtain an improvedS P; estimate of the error on th8P;;  coupled electron-photon transport calculations, but one must
grid. Finally, thisSP; estimate is then interpolated onto the be sufficiently expert in both Monte Carlo methods and the
SPis grid and added to th&Ps iterate to obtain an im- CYLTRAN code itself to implement appropriate variance-
proved estimate for th&Pys solution. This constitutes one reduction schemes. The casual user must be content to run
AMG iteration. Obtaining solutions on all of these grids the code without biasing. Ideally, we would have preferred to
would seem to be extremely expensive, but it can be showgompare ourSPy algorithm with a 2DR-Z geometry Sy
that all of the coarse grid source iterations cost roughly th@lgorithm. However, to our knowledge, only 1D coupled
same as a single fine grid source iteration in the limitNas €lectron-photorSy codes are available to the community at
— oo, In the forward-peaked scattering limit, the spectral ra-the present tim¢22].
dius for the AMG algorithm approaches 0.56 whereas the All Monte Carlo results given in this paper include a sta-
P,-DSA spectral radius approaches unity. This scheme igstical uncertainty, e.g., 562%. The uncertainty repre-
extremely efficient as long as ti&P; equations can be effi- sents one standard deviation expressed as a percentage of the
ciently solved. In general, one finds that the AMG methodsolution. Thus the answer of 5.6 given in the previous ex-
becomes increasingly effective relative Ba-DSA method ample has a standard deviation of $.6.02=0.122.
in electron transport calculations in the limit as 8@, or- All calculations were performed using an option in the
der increases. The exact reasons for this effect are well ufsEPXS[13] code that suppresses the generation of electrons
derstood 8], but too complicated to explain in detail here. It by photons. Any photon energy that would have gone into
is related to the fact that forward-peaked cross-section meelectrons is locally deposited in the material at the point of
ments are modified irBy and SPy calculations using the the photon interaction. This is a good approximation for the
extended transport correcti¢@l] to reduce the spectral ra- sSpace shielding calculations that we have performed. Specifi-
dius of the pure source iteration process without altering thé&ally, inclusion of the full physics generally changes the so-
solution of the equationf8]. As a result, the effective an- Iution by no more than a percent or so. This option is eco-
isotropy of the cross-section expansions increases with if2omical because we would otherwise have to include
creasingN even though the anisotropy of the physical crossPositron groups due to pair production. Furthermore, since
sections obviously does not vary. the electron groups come first in the group structure, the
Note that if we eliminate all of the coarse grids except thedroup-to-group  scattering matrix has a lower-triangular
SP; grid, we get theP;-DSA algorithm (the SP, and P,  Structure. Thus only one outer source iteration is required.
approximations are always identigaThis is why we previ- Overall, this option saves roughly a factor of two in memory
ously stated that thé,-DSA method is imbedded in the and CPU time.
AMG method. All calculations were performed on a CRAY YMP com-
Our computational results indicate that the spectral radiuguter at Los Alamos National Laboratory.
values that we have given for th&-DSA and AMG meth-
ods are valid when these schemes are applied tdStAg
equations in one or two spatial dimensions, and we suspect
that they are valid in three spatial dimensions as well. How- We begin with a simple homogeneous problem in 1D slab
ever, when these methods are applied to $eequations, geometry. The purpose of this problem is to establish the
the spectral radius values that we have given are valid onl{evel of agreement achieved between ®HEy and Monte
in one spatial dimension. As previously noted, both theCarlo (MC) methods when the problem is simple and the
P,-DSA and AMG methods can become unstable when ap-
plied to theSy equations in two spatial dimensions if the ;#
scattering is sufficiently forward-peaked and the scattering
ratio is sufficiently high. A demonstration of the applicability
of the P;-DSA and AMG methods to multidimensionalPy
calculations is an important component of this paper.

A. Test problem one

1.01

dN/dE (electrons/MeV)

VII. COMPUTATIONAL RESULTS

To determine the accuracy and efficiency of @Ry
method for satellite shielding applications, we formulated
both 1D and 2D test problems. We perforn@&, calcula-
tions using a code written by one of the auth@lesej. To 0.01 1.0 E(Mev)
provide a standard of comparison, we also performed calcu-
lations using the Monte Carlo codeLTRAN [11]. CYLTRAN FIG. 1. Problem one: Electron differential spectrum.

.
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% FIG. 3. Problem two: geometry.

EDR {MeV/cm3 s)
G

o, ] data. We have performedP;, SP;, SP,, andSP;; calcu-
lations, each with 70 spatial cells having the following
cell widths in the respective material regions s
‘ . ‘ , =1.27x10" % cm, A\,=7.5197x10 % cm. To obtain low
PeeBiontemy % 005 008 standard statistical errors for the Monte Carlo solution, it was
necessary to run a large number of source electron histories
FIG. 2. Problem one: energy deposition rate vs penetration. (1x107). The calculated EDR in the silicon region is given
together with CPU times in Table Il for both tH&P, and
SPy method is convergent. The problem consists of a 1DMonte Carlo calculations.
homogeneous aluminum slab with an isotropic boundary Note from Table Il that the largest change in the solution
source of electrons (1 electron/s). The slab has a thick- occurs betweenSP, and SP;. After SP, the solution
ness of 25 milg0.0635 cny, with the source located at the changes relatively little, while the required CPU time in-
planez=0 cm. The source electrons are distributed in a flatcreases in proportion to the approximation ordér The
energy spectrum as shown in Fig. 1. We have calculated th8 P;5 and Monte Carlo results differ by 5%, with the Monte
energy deposition ratéEDR) as a function of penetration, Carlo CPU time exceeding tH&P;s CPU time by over two
and the energy deposition rate in a test region defined bgrders of magnitude.
24 mil<z=<25 mil. We have performed a8 P;5 calculation To confirm that this is a deep penetration problem, we
with 80 energy group$50e~, 30y) and 50 spatial cells of have calculated the unshielded or free space dose to the sili-
uniform mesh spacing Az=1.27x10 % cm). We per- con region. This value was found to be 12.0 MeVisn
formed a Monte Carlo calculation with $Gource electron indicating 4 orders of magnitude attenuation by the shield.
histories. TheSPy, and Monte Carlo results for the EDR Thus the silicon region is indeed highly shielded.
profile are compared in Fig. 2. Note that these profiles are
almost identical. The&s Py and Monte Carlo CPU times to- C. Test problem three
gether with the results for the EDR in the test region are . . .
given in Table I. We note that the test region energy depoa The th'r? ;?[roblemb||'s a Z_F?IR'Z geonsetry, fr?ur regllcln, 4
sition rates differ less than 2%, and t8&, method is over €ep penetration problem. The geometry IS shown in =1g. <.

200 times faster than the unbiased Monte Carlo method. E."’!Ch region represents a coaxial cylinder of uniform compo-
sition. A geosynchronous trapped electron source is uni-

formly incident along the outer periphery. Again, this

L L
o 0.01 0.02

B. Test problem two geometry-source configuration is characteristic of satellite
The second problem we consider is a 1D multimaterial
deep penetration problem. Deep penetration problems are TABLE Il. Geosynchronous electron spectrum.
problems in which the source electrons are highly attenuates
before reaching the region within which the dose is desiredEnergy Integral spectrufh Differential spectrum
The purpose of this problem is to establish the level of agreetMeV) (elcm?) (elc? MeV)
ment achieved between tl&P, and Monte Carlo methods
when the problem is difficult and th&Py method is conver- 0.1 187812 1.227[13]
gent. The geometry is shown in Fig. 3. An isotropic geosyn- 0.5 2.789[11] 1.047[17]
chronous trapped electron souf@3], described in Table I, 1.0 5.861[10] 1.661[11]
is incident at the plane=0 cm. The source is normalized to 15 1.37510] 4.082[10]
1 particle/cm s. This source-geometry configuration is char- 2.0 3.224(09] 8.685[09]
acteristic of space shielding benchmark probld2j, with 2.5 8.83208] 2.409[09]
the silicon region representing a semiconductor device, and 3-0 2.419[08] 4.678[08]
the aluminum and tungsten regions representing the shield. 3-5 1.313[08] 1.278[08g]
We have written a&ORTRAN code to produce th&P, and 4.0 7.122[07] 1.074[08]
Monte Carlo input spectrum from the tabular electron spectra 4.5 3.153[07] 4.899(07]
5.0 1.396[07] 2.868[07]
TABLE I. Problem one: results for test region. 9.5 3.862(06] 1.092[07]
6.0 1.069[06] 2.194[06]
EDR (MeVicn?s) CPU time #The integral spectrum is given for a period of one day. The integral
SPs 1.55 41s spectrum value at energy; is defined as the integral spectrum
MC 1.52+1% 2 hr 22 min between energie; and .

bvalue should be read as 1.8780'2
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TABLE lll. Problem two: results. TABLE IV. Problem three: results.
EDR (MeV/cn? s) CPU time EDR (MeV/cn? s) CPU time
SP, 1.67x10°8 09s SP, 1.60x10 2 63 s
SP, 2.02x10°2 20s SP, 1.93x 102 138 s
SP, 2.11x10°8 45 s SP, 1.97x10°2 286 s
SPis 2.14x 1073 91s MC 1.82x10 2+8% 9 h 22 min
MC 2.26x103+3% 6 hr 4 min

this modified problem. Thus the 8% overshoot observed in

shielding benchmark problems. We note that for the calculat"® ©riginal problem is probably real. _
To confirm that this problem is a deep penetration prob-

tion of the dose in a region deep within a multidimensional :
problem, the Monte Carlo method requires a large number dem, we calculated the unshielded or free space dose to the

histories and often a corresponding large CPU time. We haygilicon region. It was found to be 25.8 MeV/cra while the
performed SP,, SP;, and SP, calculations, using a 35 Monte Carlo calculation gave a shielded dose of 1.82
% 35 spatial mesh having the following cell widths in each 10" % indicating 3 orders of magnitude attenuation by the
material  region: A q=2.54<10"3cm, A,=1.504 shield. Thus the silicon region is indeed highly shielded.

%102 cm. For the Monte Carlo calculation we have run '€ computational efficiency of th&Py code for prob-
2% 107 source electron histories. The EDR in the silicon re_Iem three with various acceleration schemes and two differ-

gion and the CPU times for both tt&Py, and Monte Carlo ent diffusion solvers is displayed in Table V. In this particu-
calculations are given in Table IV. N lar calculation, the AMG scheme with a preconditioned

Note from Table IV that the largest change in the solutionconiugate gradiellCCG) diffusion solver[17] is shown to
once again occurs betwe&P; and SP,, with a relatively be the most efficient. However, if the problem is sufficiently

small change betwee8P, and SP,. The SP, and Monte ill conditioned, the multigrid BBMG) diffusion solver[18]
Carlo results differ by 8%, with the Monte Carlo CPU time can surpass the conjugate gradient solver in efficiency. We

exceeding thesP;, CPU time by over two orders of magni- :z(a:t(e;re‘glvedagBe'GaGmpleﬂ?f;uch a proglttam. VIVe ?rt:ess that tftle
tude. TheSP; solution significantly overshoots the Monte an methods are used 1o solve he source it-

Carlo solution. However, there is also a relatively large un-Sration equationgwhich take the form of diffusion equa-

certainty of 8% in the Monte Carlo answer. Unfortunately,t'ons’ i.e., see Eq13)] and are not to be confused with the
the current Monte Carlo calculation required over 9 h. To.Pl'D.SA and AMG methods used to accelerate the source
reduce the uncertainty to 4% would require an excessive rufferations.
time of 37 h. It is certainly possible fo Py solutions to

overshoot the true solution. For instance, such overshoots

have been observed in previous neutral-part®R; studies We have performed a series of calculations to further in-
[15]. Since it was not practical to improve the Monte Carlovestigate the effectiveness of the angular multigrid method
statistics by running more particles, we reduced the dimentAMG) when applied to 208 Py calculations. In particular,
sions of the problem so that an uncertainty of 2% could bave compare the computational spectral radii of the 1D and
achieved with only 5 10° source histories. Th&P; solu- 2D SP, methods with the computational spectral radius of
tion overshoots the Monte Carlo solution by about 7% forthe one-dimensiona, method for one group problems with
highly forward peaked Fokker-Planck scatter[igj The 1D
problem consists of a homogeneous, nonabsorbing slab that
is 10 transport mean free paths thick with an isotropic dis-
tributed source and vacuum boundary conditions on both
boundaries. The 2D problem used for the comparison repre-
sents a generalization of a 1D problem defined by Morel and
Al Manteuffel[8]. In particular, the 2D generalization was trivi-
ally obtained by making the problem domain a square in
Cartesian geometry having the same length on each side as
the length of the 1D problem, with vacuum boundary condi-
tions prescribed at all boundaries.

D. Problem four

Z (mil)

Bdry Source

27.25

17.25

sainog Aipg

w TABLE V. Problem three:SP, acceleration scheme perfor-
mance.

Reflecting Bdry

N Acceleration scheme Matrix solver CPU tin®

I None ICCG 891
P,-DSA all groups ICCG 414

O3 S tectng By | 2725 iy AMG e~ groups,P,-DSA ygroups  ICCG 286
AMG e~ groups,P,-DSA y groups MG 310

FIG. 4. Problem three: geometry.
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TABLE VI. Performance of angular multigrid and diffusion
synthetic methods.

z (mil)

Bdry Source

0.1

1D Syi1 1D SPy 2D SPy

Acceleration N Spectral radiusSpectral radiusSpectral radius
AMG 3 0.36 0.35 0.35 8
P,-DSA 3 0.36 0.35 0.35
AMG 7 0.47 0.47 0.47 - .
P,-DSA 7 0.81 0.81 0.82 2 » 2
AMG 15 0.54 0.54 0.54 % . 3
P,-DSA 15 0.95 0.95 0.95 =3

Al
The spectral radius can be computationally estimated at

inner source iteration stdpas follows[8]:

(+1)_ 4,2\ 12 0.0 0.04 0.06 0.1 !
(I+1)— ( nk| ¢(|) ¢ )|2) , (34) Reflecting Bdry re
nk|¢’ | .
FIG. 5. Problem five: geometry.
wheren and k represent the moment and spatial indices, E. Test problem five

respectively. The Legendre moments for the Fokker-Planck

scattering assumed in this problem are giver{&ly The fifth problem is a 2DR-Z geometry, three region

problem with a void region. The problem geometry is shown
in Fig. 5. This geometry-source configuration is characteris-
o tic of the satellite shielding benchmark problems defined by
Sy [N(N=1)-n(n+1)], n=0,1,...N-1 (35 Saquiet al. [23]._V0|d reg|ons(wh|_ch are acfcually m(_)deled

as extremely dilute gasesesult in highly ill-conditioned
source iteration equations. Thus this is a very difficult prob-
lem to efficiently solve. Note from Fig. 5 that each region
represents a coaxial cylinder of uniform composition. A geo-
synchronous trapped electron source is again incident along
the outer periphery. We have performé&, P;, and P,
calculations using a 3535 spatial mesh with nonuniform
spacmg(AA, 5=2.67x10 % cm, A,,=4.0x10"2 cm). Low
density nitrogen gas (10 g/cm°’) was used to simulate the
void region in theS Py calculation, while the Monte Carlo
method allows the explicit modeling of a void. For the
Monte Carlo calculation we ran210° source electron his-
tories. The calculated EDR in the inner aluminum region is
given for both the Monte Carlo an8Py calculations in
Table VII together with CPU times.

It can be seen from Table VIl that tHe@P, and Monte
Carlo values for the EDR in the aluminum are nearly iden-
tical, and the CPU time for th&P, calculation is about

ne-sixth that of the Monte Carlo calculation. TB®& cal-

ulations were performed using the black-box multigfi8]
method to solve the source iteration equations. When we
attempted to perform th&P; calculation using the ICCG
solver, the convergence rate was so slow that the calculation
had to be terminated. Thus we see that voids can be success-

for an SPy calculation. Note that the expansion coefficients
depend upon the parametdr i.e., anSP; calculation uses
different expansion coefficients than &P; calculation.

As previously noted, th& Py equations are equivalent to
the Sy, equations in one dimension. However, t8&
equations that we solve in 1D are equivalent to the 1D even
parity form of theSy ., equations rather than the standard
first-order form solved in Morel and Manteuffg8]. None-
theless, it can be shown that the source iteration process
equivalent for both the even-parity and first-order forms of
the Sy equationg6]. Thus, we would expect to see the same
spectral radius in 105 Py calculations as in the 13 cal-
culations presented in R¢B]. Our previous Fourier analysis
[10] indicated that theP; diffusion synthetic acceleration
scheme exhibits exactly the same effectiveness o5&
calculations that it does on 18P calculations. This would
suggest that AMG should have the same effectiveness on 2
SP, calculations as 15, calculations. Finally, we wish
to remind the reader that both ti#y-DSA and AMG meth-
ods are unstabléwith sufficiently forward-peaked scattering
and sufficiently small absorptigiior 2D Sy calculations, yet
are both very effective for one-dimensiorg| calculations.
The 2D generalization of the Morel-Manteuffel problem has
the required characteristics to make g DSA and AMG
methods unstable when applied to B¢ equations. The re-

TABLE VII. Problem five: results.

sults of our investigation are given in Table VI. Note from EDR (MeVion s) CPU time(s
Table VI that the 1D results are identical for tBg,; and  SP, 2.17 225
SPy calculations. Furthermore, the 1D and 8P results SPp, 2.20 305
are identical. Therefore, we conclude that the angular multisp, 2.24 490
grid method exhibits exactly the same effectiveness on 20c 2.25+ 1% 3193

SP, calculations that it does for 1B Py calculations.
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fully modeled with a dilute gas, and the BBMG method is farthe Sy method is reasonably well established for neutron
superior to the ICCG method if the problem has highly ill- transport calculationgl5]. One would expect similar relative
conditioned source iteration equations. However, one shouldfficiencies in coupled electron-photon space shielding cal-

remember from problem three that the ICCG method can beulations. Overall, it would appear to us that coupled
more efficient than the BBMG method if the source |terat|0ne|ectr0n-photon space Sh|e|d|ng calculations represent an

equations are well conditioned. ideal application for thé& Py method. This is not unexpected
from a theoretical viewpoint. The isotropic bath of electrons
VIil. CONCLUSIONS surrounding the satellite strongly contributes to a solution

Our results clearly indicate th&tP, method is a valuable that is almost locally 1D. _
alternative to full deterministic and Monte Carlo transport  On€ of the surprising results of our study is that the
methods for coupled electron-photon space shielding calcu?1"DSA and AMG convergence acceleration methods retain
lations. For the representative problems we considered, tH8eir 1D effectiveness in 2[3Py calculations, even though
SP, approximation appears to be adequate, and gives resuft8ey can lose their effectiveness in 2y equations. Indeed,
that are within 10% of Monte Carlo results. This level of these methods can actually become unstable when applied to
accuracy is considered acceptable for engineering applicahe Sy equations under the conditions present in the coupled
tions. As one might expect from the asymptotic nature of theelectron-photon transport calculations that we performed.
SPy equations, increasing the order of the approximation Finally, we note that we have demonstrated that void re-
does not always improve the accuracy of the solution. Howgions can be successively modeled with extremely dilute
ever, neither does it appear to result in a serious increase gases. However, the presence of void regions can result in
error. TheS Py method was clearly very much more efficient ill-conditioned source iteration equations that require a mul-
than the Monte Carlo method for the problems that werdigrid diffusion solver such as BBME18]. The conjugate-
considered, but it is important to recognize that the Montegradient method could certainly be used for such equations if
Carlo method was not biased. As previously discussed, s@ multigrid preconditioner is used, but nonmultigrid precon-
phisticated variance reduction techniques required for spadditioners such as the incomplete Cholesky method should
shielding calculations are not available to the casual user ajenerally be inadequate for problems with voids. On the
the cYLTRAN code[11]. Thus we could not investigate the other hand, if voids are not present, the ICCG metfbd
effect of biasing on the efficiency afYyLTRAN. Ideally, we  can be more efficient than the BBMG method.
would have preferred to compare computational efficiency In the future, we intend to investigate the application of
with a deterministic transport method, but as previouslythe SPy method to 3D coupled electron-photon space shield-
stated, 2D deterministic transport codes for coupled electroring problems. Furthermore, we intend to investigate the use
photon calculations are not yet available to the communityof 3D adjoint SPy calculations to bias coupled electron-
Nonetheless, the lower cost of I8P, method relative to photon Monte Carlo calculations.
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