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Simplified spherical harmonic method for coupled electron-photon transport calculations

J. A. Josef and J. E. Morel
Los Alamos National Laboratory, MS D409, Los Alamos, New Mexico 87545

~Received 27 May 1997!

In this paper we apply the simplified spherical harmonic (SPN) approximation to coupled electron-photon
transport problems in two-dimensional cylindrical geometry in the energy range from roughly 10 keV to 10
MeV. The SPN equations represent an asymptotic approximation that does not necessarily converge to the
exact transport solution asN→`, but can sometimes produce solutions that are much more accurate than
diffusion theory at a fraction of the cost of a full transport treatment. To our knowledge, theSPN approxima-
tion has previously been applied only to neutron transport problems. We investigate the applicability of the
SPN method to satellite electronics shielding calculations. In addition to applying the approximation, we
generalize certain iterative convergence acceleration techniques originally developed for the one-dimensional
SN ~discrete ordinates! equations, and apply them to the two-dimensionalSPN equations. We present numerical
comparisons with Monte Carlo calculations for the purpose of examining both the accuracy of theSPN

approximation and the computational efficiency of our solution techniques.@S1063-651X~98!04505-X#

PACS number~s!: 02.70.2c, 95.30.Jx
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I. PURPOSE

The purpose of this paper is investigate the applicabi
of the simplified spherical harmonic approximation@1# to
two-dimensional ~2D! coupled electron-photon transpo
problems in the energy range from approximately 10 keV
10 MeV. We focus on calculations related to the shielding
satellite electronics from geomagnetically trapped electro
In addition, we investigate the applicability of certain n
merical solution techniques to theSPN equations that were
originally developed for 1DSN ~discrete ordinates! @2# trans-
port calculations.

II. BACKGROUND

The standard spherical harmonic orPN equations@2# have
been used to approximate the Boltzmann transport equa
for over fifty years. This approximation is based upon t
assumption that the angular dependence of the angular
can be represented in a truncated spherical harmonic ex
sion. This expansion is substituted into the transport eq
tion, and angular moments are taken with respect to e
spherical harmonic function. This results in a finite system
equations for the angular moments of the angular flux. T
index ‘‘N’’ in PN denotes the order of the spherical ha
monic expansion. In general, asN→`, the solution of the
PN equations converges to the solution of the transport eq
tion. In multidimensional problems, thePN equations are
quite complex and have a large number of unknowns.
instance, in multidimensional calculations, the number of
gular unknowns~moments! is of orderN2. The number of
unknowns associated with high expansion orders is part
larly significant for electron transport calculations becau
electron scattering is highly anisotropic and thus often
quires high order flux and cross section expansions, e.g.P7
to P15. The multidimensionalPN method can be prohibi
tively expensive with such high expansion orders in terms
both memory and CPU time.

In the early 1960s, multidimensionalPN calculations were
571063-651X/98/57~5!/6161~11!/$15.00
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far beyond the reach of existing computers, but diffusi
theory was not always adequate for nuclear reactor analy
In view of this, Gelbard developed a heuristic simplificatio
of thePN equations, which he called the simplifiedPN equa-
tions @1#, with the intent that they yield greater accuracy th
diffusion theory at a computational cost far less than fullPN
theory. The method was originally applied to neutron tra
port problems, and was observed to give precisely the typ
accuracy that Gelbard had hoped for. Since they represe
a heuristic simplification to thePN equations, theSPN equa-
tions were not expected to yield the exact transport equa
in the limit as N→`, and they did not do so. The initia
derivation of theSPN equations was neither mathematica
rigorous nor physically intuitive. Thus even though Gelba
was able to demonstrate that theSPN equations were useful
the lack of a sound theoretical foundation has undoubte
acted as an obstruction to the widespread use of these e
tions. However, it has recently been shown by Larsenet al.
that theSPN equations can be derived from the transp
equation via a formal asymptotic expansion related to
diffusion limit @3,4#. Thus a rigorous theoretical basis for th
SPN equations now exists.

Some insight into the accuracy of theSPN approximation
can be gained by considering some of its properties.

~1! The SP1 andP1 equations are completely equivalent
all geometries. IfN.1, there is no equivalence betwee
the SPN and PN equations in multidimensional geom
etries.

~2! TheSPN equations and thePN equations are completel
equivalent in 1D slab geometry.

~3! The multidimensionalSPN equations will exactly yield
anyPN solution that has a 1D slab geometry depende
regardless of the orientation of that dependence with
spect to the multidimensional coordinate system.

The first property ensures that the diffusion limit is embe
ded within theSPN equations. This follows from the fact tha
the steady-stateP1 equations are equivalent to diffusio
theory under the assumption of isotropic scattering. The s
6161 © 1998 The American Physical Society
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6162 57J. A. JOSEF AND J. E. MOREL
ond and third properties suggest that ifN is sufficiently large,
the multidimensionalSPN equations should be very accura
whenever the transport solution is ‘‘locally 1D,’’ i.e., when
ever the angular flux solution at each point in space
approximately 1D angular and spatial dependencies. Fo
stance, suppose that at each point in space, denoted brW0 ,
we can define a direction vector, denoted bynW 0 , such that
the angular dependence of the angular flux is azimuth
symmetric aboutnW 0 , and the spatial dependence of the a
gular flux does not vary in any direction perpendicular tonW 0 .
Then the solution is locally 1D. Furthermore, if the vectornW 0

is constant throughout space, the solution is globally 1
Pomraning has recently shown that theSPN equations can be
derived both variationally and asymptotically under the
sumption that the flux is locally 1D@5#. This derivation re-
quires more restrictive assumptions than that of Larsenet al.
@3#, but it provides a much clearer physical interpretation
the SPN approximation.

Some insight into the relative cost of theSPN approxima-
tion can be gained by noting that the number ofPN un-
knowns in multidimensions is of orderN2 whereas the num
ber of SPN unknowns in multidimensions is of orderN.
Thus the potential exists for tremendous computational s
ings whenN is large. As previously noted, large valuesN are
often required in electron transport calculations because
the highly anisotropic character of electron scattering.

It has recently been shown that theSPN equations can be
placed in a so-called ‘‘canonical’’ form@3,4# that consists of
(N11)/2 diffusion equations coupled at each point in spa
and energy only through a scattering source. These equa
can be efficiently solved by iterating upon this source c
pling in conjunction with convergence acceleration tec
niques. The convergence acceleration techniques that we
ploy are based upon the use of diffusion approximations
estimate iterative errors. The advantage of this approac
that eachSPN iteration consists of solving (N11)/2 inde-
pendent diffusion equations. The numerical discretizat
and solution techniques for diffusion equations are hig
advanced because of the widespread use of diffusion
proximations in physics and engineering. Discretization a
solution techniques for thePN equations are much less a
vanced.

The diffusion-based iterative convergence accelera
techniques that we apply to theSPN equations are 2D gen
eralizations of techniques originally developed for the 1DSN

equations. TheSN approximation is currently the mos
widely used numerical technique for solving the transp
equation@2#. Like the PN method, theSN method converges
to the exact transport solution asN→`. In 1D slab geom-
etry, theSN equations with Gauss quadrature are equiva
to the PN21 equations. They are also nearly equivalent
other 1D geometries. However, in multidimensional geo
etries, theSN and PN21 approximations fundamentally dif
fer. In particular, thePN equations yield an elliptic approxi
mation for the streaming operator and preserve the rotati
invariance of the transport operator, while theSN equations
yield a hyperbolic approximation for the streaming opera
and do not preserve this invariance. As a result,SN solutions
can sometimes exhibit nonphysical oscillations called ray
s
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fects@2#. TheSPN equations are similar to thePN equations
in that they are elliptic and rotationally invariant, and thus
not exhibit ray effects.

Since theSPN equations are equivalent to thePN equa-
tions in 1D slab geometry, and thePN21 equations are
equivalent to theSN equations in 1D slab geometry, it fol
lows that theSPN21 equations are also equivalent to theSN
equations in 1D slab geometry. In fact, the ‘‘canonic
form’’ of the SPN21 equations that we solve reduces exac
to the even-paritySN equations@6# in 1D slab geometry.
Furthermore, the basic iterative solution technique that
use to solve ourSPN equations is the standard source ite
tion technique@2# routinely used to solve theSN equations in
all geometries. The iterative convergence acceleration te
niques that we apply to theSPN equations are 2D general
zations of theP1 diffusion-synthetic acceleration techniqu
~P1-DSA! @7# and the angular multigrid acceleration tec
nique~AMG! @8#. AlthoughP1-DSA is very effective in 1D
SN calculations, it has recently been shown to be unsta
when applied to the 2DSN equations with highly anisotropic
scattering@9#. Since P1-DSA is a fundamental part of the
overall AMG algorithm, it follows that the AMG method
will also be unstable under similar conditions. These res
are particularly disturbing for electron transport calculatio
because electron scattering is indeed highly forward pea
and convergence acceleration is generally needed for e
tron transport calculations.

We have performed a Fourier analysis that indicates
theP1-DSA method is as effective for the 2DSPN equations
as it is for the 1DSN equations. We do not present the deta
of this analysis here because it is quite lengthy and it
presented elsewhere@10#. However, we do present computa
tional results that demonstrate thatboth the P1-DSA and
AMG techniques are as effective for the 2DSPN equations
as they are for the 1DSN andSN equations. This is a some
what surprising result that enables us to make theSPN
method even more efficient for multidimensional calcu
tions.

In this paper we apply theSPN approximation to coupled
electron-photon transport problems related to shielding sa
lite electronics from geomagnetically trapped electrons. O
would expect that theSPN approximation would do well in
this regime because the exteriors of the satellites are ba
in a uniform isotropic flux of electrons, leading to angul
flux distributions that are approximately locally 1D.

The remainder of this paper is organized as follows. Fi
we describe the Boltzmann transport equations for coup
electron-photon transport, and the cross section data tha
use in ourSPN calculations. Next, we describe theSPN
equations that we solve. This is followed by a description
the source iteration technique and the convergence acce
tion techniques that we use to solve theSPN equations.
Computational results are presented next. In particular,
compare theSPN and Monte Carlo methods in terms of bo
accuracy and computational cost. After some preliminary
calculations, calculations are carried out in 2D cylindric
geometry. We do not compare theSPN method with thePN
and SN methods because computer codes that can perf
coupled electron-photon 2DSN andPN calculations in cylin-
drical geometry~if they exist! are not generally available to
the scientific community. On the other hand, Monte Ca



tid
n
a

lu

em
e
n
P
wi
to
o
d

he
en
W
ld
th

ot

io
,

l

s
i

to

tio

n

n
-
stic

r-
nal
gy
ons
are

e to
g-
p-
n

n-

nd

sly
ec-
as

ron
rm

r-

57 6163SIMPLIFIED SPHERICAL HARMONIC METHOD FOR . . .
codes, which represent the accepted standard for mul
mensional coupled electron-photon transport calculatio
are available from several sources. For instance, we h
used a code distributed by Sandia National Laboratories@11#.
Finally, our computational results are followed by conc
sions and recommendations for future work.

III. COUPLED ELECTRON-PHOTON
TRANSPORT EQUATIONS

The fundamental model of particle transport for a syst
of electrons and photons is given by a Boltzmann-Fokk
Planck~BFP! equation@12# for electrons and the Boltzman
equation @2# for photons. The particular version of BF
equation that we use consists of the Boltzmann equation
an additional continuous-slowing-down term. We refer
this electron equation as the Boltzmann-CSD equation. C
pling occurs between the electron and photon equations
to the physical fact that electrons generate photons in t
interaction with the host medium, and photons in turn g
erate electrons in their interaction with the host medium.
assume that there are no external electric or magnetic fie
and the density of transporting particles is much less than
density of target atoms. The steady-state electron and ph
equations are given as

VW •¹W ce~rW,E,VW !1s te~rW,E!ce~rW,E,VW !

5E
0

`

dE8E
4p

dV8se→e* ~rW,E8→E,VW 8•VW !ce~rW,E8,VW 8!

1E
0

`

dE8E
4p

dV8sp→e~rW,E8→E,VW 8•VW !

3cp~rW,E8,VW 8!1
]

]E
@Re~rW,E!ce~rW,E,VW !#

1Qe~rW,E,VW !, ~1!

VW •¹W cp~rW,E,VW !1s tp~rW,E!cp~rW,E,VW !

5E
0

`

dE8E
4p

dV8sp→p~rW,E8→E,VW 8•VW !cp~rW,E8,VW 8!

1E
0

`

dE8E
4p

dV8se→p~rW,E8→E,VW 8•VW !

3ce~rW,E8,VW 8!1Qp~rW,E,VW ! ~2!

where c(rW,E,VW ) is the angular flux ~in particles

cm22 s21 MeV21!, VW is the particle direction,s t(rW,E) is the

total cross section~in cm21!, andse→e* (rW,E8→E,VW 8•VW ) is
the electron to electron differential scattering and product
cross section, whereE8 denotes the initial particle energy

VW 8 denotes the initial particle direction,E denotes the fina

particle direction, andVW denotes the final direction. Thi
term does not include energy losses due to soft inelastic
teractions, which are treated by the CSD opera

(cm21 MeV21 sr21). In addition,sp→e(rW,E8→E,VW 8•VW ) is
the photon to electron differential scattering cross sec
i-
s,
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(cm21 MeV21 sr21), sp→p(rW,E8→E,VW 8•VW ) is the photon
to photon differential scattering cross sectio

(cm21 MeV21 sr21), se→p(rW,E8→E,VW 8•VW ) is the electron
to photon differential scattering cross sectio
(cm21 MeV21 sr21), Re(rW,E) is the electron restricted stop
ping power. Includes only energy losses due to soft inela
interactions (cm21 MeV), andQ(rW,E) is the distributed an-
gular source~in particles cm3 s21 MeV21!, and subscriptse
andp denote electron and photons, respectively.

The electron inelastic interactions~both collisional and
radiative! are divided into two classes: ‘‘catastrophic’’ inte
actions that result in large energy losses and directio
changes, and ‘‘soft’’ interactions that result in small ener
losses and directional changes. All catastrophic interacti
and the directional changes due to soft interactions
treated with the Boltzmann operator. All energy losses du
soft interactions are treated with the continuous-slowin
down ~CSD! operator, i.e., the energy derivative term a
pearing in Eq.~1!. This operator continuously slows dow
particles at a rate given by the restricted stopping power,R.
The stopping power is ‘‘restricted’’ in the sense that it i
cludes only contributions from soft interactions.

The CEPXS code @13# was used to generate electron a
photon cross-section data for ourSPN calculations.CEPXS

produces a special ‘‘pseudo’’ cross section@14# that effec-
tively lumps the CSD operator together with the previou
defined electron to electron differential scattering cross s
tion, se→e* . Thus, the computer code that we developed w
designed to solve theSPN analog of the following pure
Boltzmann equations for the electrons and photons:

VW •¹W ce~rW,E,VW !1s te~rW,E!ce~rW,E,VW !

5E
0

`

dE8E
4p

dV8se→e~rW,E8→E,VW 8•VW !ce~rW,E8,VW 8!

1E
0

`

dE8E
4p

dV8sp→e~rW,E8→E,VW 8•VW !

3cp~rW,E8,VW 8!1Qe~rW,E,VW !, ~3!

VW •¹W cp~rW,E,VW !1s tp~rW,E!cp~rW,E,VW !

5E
0

`

dE8E
4p

dVW 8sp→p~rW,E8→E,VW 8•VW !cp~rW,E8,VW 8!

1E
0

`

dE8E
4p

dVW se→p~rW,E8→E,VW 8•VW !ce~rW,E8,VW 8!

1Qp~rW,E,VW !. ~4!

However, it is important to recognize that the actual elect
equation being solved includes the CSD term. The CSD te
is simply ‘‘embedded’’ within the electron to electron diffe
ential scattering cross section in Eq.~3! via theCEPXSdata.
This is why we usese→e in Eq. ~3! rather thanse→e* .
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IV. MULTIGROUP SPN EQUATIONS

TheSPN equations that we solve are discretized in ene
using the standard multigroup approximation@2#. A group is
associated with both an interval of energies and a part
type. For instance, in a typical calculation, groups 1 throu
50 might represent 50 contiguous energy intervals for e
trons, while groups 51 through 80 might represent 30 c
tiguous energy intervals for photons. The multigroup angu
flux for groupg is denoted bycg , and represents the integr
of the angular flux over the energy interval associated w
groupg. TheCEPXScode provides data in a multigroup Leg
endre format. In particular,CEPXS provides the total cross
section for each group together with Legendre moments
cross sections for transfers between groups. These dat
sufficient to completely describe the interaction of electro
and photons with matter.

The canonical multigroupSPN equations@4,15# are given
as

2mm
2 ¹W •

1

s tg
¹W cmg

1 1s tgcmg
1 5Qmg

1 2mm¹W •S QW mg
2

s tg
D ,

m51,~N11!/2, g51,G ~5!

cW mg
2 52

mm

s tg
¹W cmg

1 1
1

s tg
QW mg

2 ,

m51,~N11!/2, g51,G, ~6!

where

Qmg
1 5(

j 51

G

(
n50,2,

N21

~2n11!Pn~mm!sn, j→gfn j1gmg
1 , ~7!

QW mg
2 5(

j 51

G

(
n51,3,

N

~2n11!Pn~mm!sn, j→gfW n, j1qW mg
2 , ~8!

fng52 (
m51

~N11!/2

Pn~mm!cmg
1 wm , n even, ~9!

fW ng52 (
m51

~N11!/2

Pn~mm!cW mg
2 wm , n odd, ~10!

and wherec1 andcW 2 are theSPN analogs of the even- an
odd-parity angular fluxes,m is the angular index,mm is the
mth Gauss quadrature cosine,wm is themth Gauss quadra
ture weight,Pn(m) is the Legendre polynomial of degreen,
g is the energy group index,N is an odd integer,fn is the
analog angular flux moment,sn, j→g is thenth Legendre mo-
ment of the cross section for ‘‘scattering’’ from groupj to
group g, qm

1 and qW m
2 are the analogs of the even- and od

parity angular distributed sources, respectively, and all o
quantities are as previously defined. Note that in the mu
group approximation, ‘‘scattering’’ cross sections m
physically represent particle production as well as true s
tering.

For the case of 1D slab geometry, theSPN equations be-
come equivalent to the even-paritySN11 equations and thes
quantities can be related to the angular fluxc as follows:
y

le
h
c-
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r
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-
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c1~mm!5 1
2 @c~mm!1c~2mm!#, ~11!

cW 2~mm!5 1
2 @c~mm!2c~2mm!#nW , ~12!

wherenW is a unit vector directed along the 1D spatial ax
We henceforth suppress use of the term ‘‘analog’’ when
ferring to the even-parity and odd-parity fluxlike and sourc
like quantities in theSPN equations.

The canonicalSPN equations are spatially discretize
with a standard bilinear-continuous finite element treatm
@16# to obtain a set of matrix equations amenable to com
tational solution. The termmm¹W •(QW mg

2 /s tg) on the right side
of Eq. ~5! would appear to require special attention beca
such a term does not usually appear in standard diffus
equations. However, the problems that we consider do
have distributed sources. In this case, it can be shown
Qmg

1 is composed of a linear combination of even-par
flux gradients, and consequently thatmm¹W •(QW mg

2 /s tg)
has the same spatial discretization as the standard
2mm

2 ¹W •(1/s tg)¹W cmg
1 on the left side of Eq.~5!.

Because theSPN equations are self-adjoint, the finite
element treatment yields symmetric positive definite coe
cient matrices. Efficient, robust numerical methods exist
the solution of such matrix equations. In particular, we u
the conjugate-gradient method preconditioned with inco
plete Cholesky decomposition~ICCG! @17# and the black-
box multigrid method~BBMG! @18# in conjunction with
source iteration to solve the discretizedSPN equations.

V. SOURCE ITERATION

Our multigroupSPN equations can be solved iterative
by the source iteration~SI! method. This technique is actu
ally quite simple. Note that all coupling in group and dire
tion occur in the scattering sources on the right sides of E
~5! and ~6!. In its simplest possible form, source iteratio
proceeds by using the fluxes from the previous iteration
calculate new scattering sources, and then solving Eqs~5!
and ~6! to obtain the next flux iterates. The process is th
repeated until convergence is achieved. The previous ite
fluxes for the first iteration are generally assumed to be z
unless a better guess is available.

In a multigroup calculation, the source iteration process
decomposed into two nested iterations referred to as the
ner and outer iterations. The outer iterations are charac
ized by iterations on the scattering sources resulting fr
intergroup transfers, while the inner iterations are charac
ized by iterations on the scattering sources resulting fr
within-group transfers. As one would expect from the n
menclature, the inner source iteration is nested within
outer source iteration.

An outer source iteration begins by using the latest fl
iterates to calculate the intergroup scattering source for gr
1. Next the inner source iteration for group 1 begins by us
the latest iterate for the group 1 flux to calculate the with
group scattering source for group 1. The inner iteration
group 1 is completed by solving the equations for the gro
1 fluxes. The inner iteration process is then repeated u
convergence of the within-group scattering source
achieved for group 1. The outer iteration is completed
performing all of the steps described above for each rem
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57 6165SIMPLIFIED SPHERICAL HARMONIC METHOD FOR . . .
ing group in succession. The outer iterations are repe
~together with the inner iterations nested within them! until
the intergroup scattering sources converge for all of
groups.

It is useful to consider a formal representation of the in
source iteration process for a single group. In particular,

2mm
2 ¹W •

1

s t
¹W cm

1~ l 11!1s tcm
1~ l 11!

5Qm
12mm

1~ l !2mm¹W •S QW m
2~ l !

s t
D ,

m51,~N11!/2, ~13!

cW m
2~ l 11!52

mm

s t
¹W cm

1~ l 11!1
1

s t
QW m

2~ l ! ,

m51,~N51!/2, ~14!

fn
~ l 11!52 (

m51

N/2

Pn~mm!cm
1~ l 11!wm for n even, ~15!

fW n
~ l 11!52 (

m51

N/2

Pn~mm!cW m
2~ l 11!wm for n odd, ~16!

Qm
1~ l 11!5 (

n50,2

N21

~2n11!Pn~mm!snfn
~ l 11!1qm

1 , ~17!

QW m
2~ l 11!1 (

n51,3

N

~2n11!Pn~mm!snfW n
~ l 11!1qW m , ~18!

where l is the inner iteration index, and where the gro
indices have been suppressed for simplicity and the in
group sources have been hidden within the inhomogene
sources. Let us now review the inner iteration process
detail. The iteration process begins with even-parity and o
parity angular fluxes from the previous iteration~step l !.
These flux iterates are used together with Eqs.~15!–~18! to
calculate new even-parity and odd-parity sources,Qm

1( l ) and

QW m
2( l ) , respectively. The inner iteration process proceeds

solving Eq.~13! for the even-parity angular fluxes at stepl
11 while keeping the scattering sources on the right side
that equation fixed at stepl . Note that this step requires th
solution of (N11)/2 independent diffusion equations. Th
inner iteration at stepl 11 is completed by using the even
parity fluxes at stepl 11 and the odd-parity sources at stepl
together with Eq.~14! to obtain the odd-parity angular fluxe
at stepl 11. Note that Eq.~14! constitutes an explicit expres
sion for the odd-parity flux, i.e., one need not solve a diff
ential equation. Rather one need only take a gradient of
even-parity flux.

We solve each of the discrete diffusion equations ass
ated with the discrete version of Eq.~13! using either the
incomplete-Cholesky conjugate-gradient~ICCG! method
@17# or the black-box multigrid~BBMG! method@18#. Thus
there are iterations nested within the inner source iteratio
We refer to these iterations as diffusion iterations.
ed

e

r

r-
us
in
d-

y

f

-
e

i-

s.

The stopping criteria for the diffusion iterations depe
upon the solver being used. For instance, the ICCG so
uses a stopping criterion based upon the relative chang
the solution vector together with the norm of the residu
relative to the norm of the source vector. Specifically, let
express the equations being solved as follows:

CvW 5bW , ~19!

whereC is the coefficient matrix,vW is the solution vector,
and bW is the source vector. The ICCG iterations are term
nated when

ivW ~ l 11!2vW ~ l !i

ivW ~ l 11!i
.T ~20!

and

iCvW ~ l 11!2bW i

ibW i
.T, ~21!

where ‘‘i i’’ denotes the Euclidean vector norm,l denotes
the ICCG iteration index, andT denotes the user-specifie
error tolerance.

The black-box multigrid solver has its own stopping c
teria, but we do not use it. Rather we simply have the BBM
routine perform 5-V cycles and then accept the solution
converged. This seems to be the most efficient way to use
BBMG solver for the class of problems we considered.

The inner source iterations are terminated when the
clidean norm of the change in the zeroth flux moments
vided by the Euclidean norm of the zeroth flux moments
less than a user-specified error tolerance. Specifically, te
nation occurs when

S (kuf0k
~ l 11!2f0k

~ l !u2

(kuf0k
~ l 11!u2 D 1/2

,T, ~22!

wherek is the spatial index.
The outer source iterations are terminated using a va

tion on the condition given in Eq.~22!:

S (kuf0kg
~ l 11!2f0kg

~ l ! u2

(kuf0kg
~ l 11!u2 D ,T, g51,G, ~23!

wheref0kg
l denotes the final zeroth flux moment for spac

point k and groupg calculated during outer iterationl .
In general, the diffusion iteration convergence criterion

made more stringent than the inner source iteration criter
and the inner source iteration convergence criterion is m
more stringent than the outer source iteration criterion. O
timal stopping criteria are difficult to define. We genera
used tolerances of 1026, 1025, and 1024, respectively, for
the diffusion iterations, inner source iterations, and ou
source iterations. Of course, there was no explicit conv
gence tolerance for the diffusion iterations when the BBM
method was used to solve Eq.~13!.

The outer iterations generally converge quite quickly
coupled electron-photon transport calculations. In fact,
cause of simplifications to the physics for electron prod
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tion by photons~discussed in Sec. VII!, all of the calcula-
tions presented in this paper were guaranteed to converg
one outer source iteration.

Inner iterations can be very slow to converge. This
particularly so for the lower-energy electron groups. Th
acceleration of the inner source iteration convergence
highly desirable for these groups.

VI. CONVERGENCE ACCELERATION

We use two related acceleration techniques to accele
the inner iterations of electrons:P1 diffusion-synthetic accel-
eration (P1-DSA) @7# and the angular multigrid method@8#.
The P1-DSA method can be interpreted as a two-g
method. In fact,P1-DSA is imbedded within the angula
multigrid method. We will explain what we mean by th
shortly. Let us begin a description of synthetic accelerat
by considering the following general matrix problem

H f 5q, ~24!

which may be solved iteratively by splitting the coefficie
matrix

H5A2B ~25!

and specifying an iteration scheme as follows:

f ~ l 11!5A21Bf ~ l !1A21q. ~26!

By manipulating Eqs.~24!, ~25!, and~26!, it may be shown
that the exact error inf at iteration step (l 11) satisfies

He~ l 11!5r ~ l 11!, ~27!

where the error is defined by

e~ l 11!5 f 2 f ~ l 11! ~28!

and the residual is defined as

r ~ l 11!5q2H f ~ l 11!. ~29!

We can obtain the exact error inf ( l 11) by solving Eq.~27!.
However, Eq.~27! is just as difficult to solve as the origina
problem, Eq.~24!. The main idea of synthetic acceleration
to obtain an estimate of the error inf ( l 11) by solving Eq.
~27! with a low-rank approximation toH. The accelerated
iteration scheme then takes the form

f ~ l 11/2!5A21Bf ~ l !1A21q, ~30!

r ~ l 11/2!5q2H f ~ l 11/2!, ~31!

c~ l 11/2!5HL
21Pr ~ l 11/2!, ~32!

f ~ l 11!5 f ~ l 11/2!1Tc~ l 11/2!, ~33!

whereHL is a low-rank operator,P is a projection operato
that maps the full-rank residual to the low-rank space ofHL ,
and T is an interpolation operator that maps the low-ra
correction to the full-rank space ofH.

Synthetic acceleration is effective if the following thre
conditions are met.
in

s
s
is

te

n

~1! The low-rank operator must be inexpensive to invert re
tive to the cost of inverting the full-rank operator.

~2! The low-rank operator must attenuate the error mod
which are not well attenuated by the basic iterati
scheme.

~3! The low-rank operator must not excessively amplify t
error modes that are well attenuated by the basic itera
scheme.

In P1-diffusion synthetic acceleration@7#, the basic itera-
tion scheme is source iteration, and the low-rank operato
the P1 operator. The projection and interpolation operato
are defined in terms ofP0 andP1 Legendre moments of the
angular flux. The effectiveness of an iteration scheme is u
ally measured in terms of its spectral radius. The spec
radius represents the asymptotic error reduction factor,
the factor by which any norm of the error is reduced p
iteration after ‘‘sufficiently many’’ iterations. In general, th
spectral radius values quoted in this paper for various m
ods will correspond to spatially infinite homogeneous pro
lems with no spatial discretization and in some cases,
angular discretization. The spectral radii observed in reali
discretized computations are usually comparable to the
alized model values as long as one is careful to consiste
discretize the low-order operators relative to the high-or
operator@19#.

Source iteration has an infinite-medium spectral rad
equal to the scattering ratio,c[s0 /s t . The spectral radius
in any finite-medium problem is bounded from above by t
infinite-medium value, and approaches the infinite-medi
value as the optical thickness of the finite domain increas
In the worst case, the infinite-medium spectral radius
unity. This corresponds to pure scatter with no removal, i
s t5s0 . Electron scattering generally leads to spectral ra
for the low-energy groups that are very near unity. Th
source iteration is inefficient for these electron groups. If
scattering cross-section expansions can be accurately
cated at theP1 level, P1-DSA reduces the spectral radius
approximately 0.23c. This is a dramatic improvement fo
simply solving one additional diffusion equation per grou
On the other hand, if higher expansion orders must be u
the spectral radius withP1-DSA is given byb[s2 /s t @20#.
Unfortunately, as the scattering becomes increasingly
ward peaked,b approaches unity@8#. Thus P1-DSA be-
comes ineffective in the forward-peaked scattering limit.

This deficiency can be remedied by using an angular m
tigrid method that is in some sense a generalization of
P1-DSA method. For instance, theP1-DSA method can be
thought of as a two-grid method. The ‘‘fine grid’’ is th
transport operator~or in our case, theSPN equations!, and
the ‘‘coarse grid’’ is theP1 operator. The central theme of
multigrid scheme is to have a hierarchy of increasing
coarse grids. Each coarse grid is used to calculate an esti
of the error on the grid above it. For instance, let us assu
that the angular multigrid method starts with anSP15 ap-
proximation on the ‘‘fine grid.’’ A source iteration is per
formed on this grid to obtain an estimate of the solutio
Then theSP15 residuals are calculated and projected onto
next coarse grid, which consists of anSP7 approximation. A
source iteration is performed on theSP7 grid to obtain an
estimate of the error on theSP15 grid. Then theSP7 residual
is calculated and projected onto anSP3 grid. A source itera-
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tion is performed on theSP3 grid to obtain an estimate of th
error on theSP7 grid. The SP3 residual is then calculate
and projected onto anSP1 grid. TheSP1 equations are then
solved to obtain an estimate of the error on theSP3 grid.
This SP1 estimate is then interpolated onto theSP3 grid and
added to theSP3 iterate to obtain an improvedSP3 estimate
for the error in theSP7 grid. This SP3 estimate is then in-
terpolated onto theSP7 grid and added to theSP7 iterate to
obtain an improvedSP7 estimate of the error on theSP15
grid. Finally, thisSP7 estimate is then interpolated onto th
SP15 grid and added to theSP15 iterate to obtain an im-
proved estimate for theSP15 solution. This constitutes on
AMG iteration. Obtaining solutions on all of these grid
would seem to be extremely expensive, but it can be sho
that all of the coarse grid source iterations cost roughly
same as a single fine grid source iteration in the limit asN
→`. In the forward-peaked scattering limit, the spectral
dius for the AMG algorithm approaches 0.56 whereas
P1-DSA spectral radius approaches unity. This scheme
extremely efficient as long as theSP1 equations can be effi
ciently solved. In general, one finds that the AMG meth
becomes increasingly effective relative toP1-DSA method
in electron transport calculations in the limit as theSPN or-
der increases. The exact reasons for this effect are well
derstood@8#, but too complicated to explain in detail here.
is related to the fact that forward-peaked cross-section
ments are modified inSN and SPN calculations using the
extended transport correction@21# to reduce the spectral ra
dius of the pure source iteration process without altering
solution of the equations@8#. As a result, the effective an
isotropy of the cross-section expansions increases with
creasingN even though the anisotropy of the physical cro
sections obviously does not vary.

Note that if we eliminate all of the coarse grids except
SP1 grid, we get theP1-DSA algorithm ~the SP1 and P1
approximations are always identical!. This is why we previ-
ously stated that theP1-DSA method is imbedded in th
AMG method.

Our computational results indicate that the spectral rad
values that we have given for theP1-DSA and AMG meth-
ods are valid when these schemes are applied to theSPN
equations in one or two spatial dimensions, and we sus
that they are valid in three spatial dimensions as well. Ho
ever, when these methods are applied to theSN equations,
the spectral radius values that we have given are valid o
in one spatial dimension. As previously noted, both
P1-DSA and AMG methods can become unstable when
plied to theSN equations in two spatial dimensions if th
scattering is sufficiently forward-peaked and the scatter
ratio is sufficiently high. A demonstration of the applicabili
of the P1-DSA and AMG methods to multidimensionalSPN
calculations is an important component of this paper.

VII. COMPUTATIONAL RESULTS

To determine the accuracy and efficiency of ourSPN
method for satellite shielding applications, we formulat
both 1D and 2D test problems. We performedSPN calcula-
tions using a code written by one of the authors~Josef!. To
provide a standard of comparison, we also performed ca
lations using the Monte Carlo codeCYLTRAN @11#. CYLTRAN
n
e

-
e
is

n-

o-

e

n-
s

e

s

ct
-

ly
e
-

g

u-

is accepted by the scientific community as an accurate s
of-the-art code for coupled electron-photon transport cal
lations. Thus it is appropriate that it serve as our benchm
For each problem we investigate the accuracy of the num
cal solutions, the computational efficiency of the metho
and provide a brief discussion of results. We have compa
our SPN scheme with an unbiased Monte Carlo method. T
CYLTRAN code can be biased to more efficiently perfor
coupled electron-photon transport calculations, but one m
be sufficiently expert in both Monte Carlo methods and
CYLTRAN code itself to implement appropriate varianc
reduction schemes. The casual user must be content to
the code without biasing. Ideally, we would have preferred
compare ourSPN algorithm with a 2DR-Z geometrySN
algorithm. However, to our knowledge, only 1D couple
electron-photonSN codes are available to the community
the present time@22#.

All Monte Carlo results given in this paper include a st
tistical uncertainty, e.g., 5.662%. The uncertainty repre
sents one standard deviation expressed as a percentage
solution. Thus the answer of 5.6 given in the previous
ample has a standard deviation of 5.630.0250.122.

All calculations were performed using an option in th
CEPXS @13# code that suppresses the generation of electr
by photons. Any photon energy that would have gone i
electrons is locally deposited in the material at the point
the photon interaction. This is a good approximation for t
space shielding calculations that we have performed. Spe
cally, inclusion of the full physics generally changes the s
lution by no more than a percent or so. This option is e
nomical because we would otherwise have to inclu
positron groups due to pair production. Furthermore, si
the electron groups come first in the group structure,
group-to-group scattering matrix has a lower-triangu
structure. Thus only one outer source iteration is requir
Overall, this option saves roughly a factor of two in memo
and CPU time.

All calculations were performed on a CRAY YMP com
puter at Los Alamos National Laboratory.

A. Test problem one

We begin with a simple homogeneous problem in 1D s
geometry. The purpose of this problem is to establish
level of agreement achieved between theSPN and Monte
Carlo ~MC! methods when the problem is simple and t

FIG. 1. Problem one: Electron differential spectrum.
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6168 57J. A. JOSEF AND J. E. MOREL
SPN method is convergent. The problem consists of a
homogeneous aluminum slab with an isotropic bound
source of electrons (1 electron/cm2 s). The slab has a thick
ness of 25 mils~0.0635 cm!, with the source located at th
planez50 cm. The source electrons are distributed in a
energy spectrum as shown in Fig. 1. We have calculated
energy deposition rate~EDR! as a function of penetration
and the energy deposition rate in a test region defined
24 mil<z<25 mil. We have performed anSP15 calculation
with 80 energy groups~50e2, 30g! and 50 spatial cells o
uniform mesh spacing (Dz51.2731023 cm). We per-
formed a Monte Carlo calculation with 106 source electron
histories. TheSPN and Monte Carlo results for the EDR
profile are compared in Fig. 2. Note that these profiles
almost identical. TheSPN and Monte Carlo CPU times to
gether with the results for the EDR in the test region
given in Table I. We note that the test region energy de
sition rates differ less than 2%, and theSPN method is over
200 times faster than the unbiased Monte Carlo method

B. Test problem two

The second problem we consider is a 1D multimate
deep penetration problem. Deep penetration problems
problems in which the source electrons are highly attenua
before reaching the region within which the dose is desir
The purpose of this problem is to establish the level of agr
ment achieved between theSPN and Monte Carlo method
when the problem is difficult and theSPN method is conver-
gent. The geometry is shown in Fig. 3. An isotropic geos
chronous trapped electron source@23#, described in Table II,
is incident at the planez50 cm. The source is normalized t
1 particle/cm2 s. This source-geometry configuration is cha
acteristic of space shielding benchmark problems@23#, with
the silicon region representing a semiconductor device,
the aluminum and tungsten regions representing the sh
We have written aFORTRAN code to produce theSPN and
Monte Carlo input spectrum from the tabular electron spe

TABLE I. Problem one: results for test region.

EDR (MeV/cm3 s) CPU time

SP15 1.55 41s
MC 1.5261% 2 hr 22 min

FIG. 2. Problem one: energy deposition rate vs penetration
y
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data. We have performedSP1 , SP3 , SP7 , andSP15 calcu-
lations, each with 70 spatial cells having the followin
cell widths in the respective material regions:DAl,Si
51.2731023 cm, DW57.519731024 cm. To obtain low
standard statistical errors for the Monte Carlo solution, it w
necessary to run a large number of source electron histo
(13107). The calculated EDR in the silicon region is give
together with CPU times in Table III for both theSPN and
Monte Carlo calculations.

Note from Table III that the largest change in the soluti
occurs betweenSP1 and SP3 . After SP7 the solution
changes relatively little, while the required CPU time i
creases in proportion to the approximation orderN. The
SP15 and Monte Carlo results differ by 5%, with the Mon
Carlo CPU time exceeding theSP15 CPU time by over two
orders of magnitude.

To confirm that this is a deep penetration problem,
have calculated the unshielded or free space dose to the
con region. This value was found to be 12.0 MeV/cm3 s,
indicating 4 orders of magnitude attenuation by the shie
Thus the silicon region is indeed highly shielded.

C. Test problem three

The third problem is a 2D,R-Z geometry, four region,
deep penetration problem. The geometry is shown in Fig
Each region represents a coaxial cylinder of uniform com
sition. A geosynchronous trapped electron source is u
formly incident along the outer periphery. Again, th
geometry-source configuration is characteristic of sate

FIG. 3. Problem two: geometry.

TABLE II. Geosynchronous electron spectrum.

Energy
~MeV!

Integral spectruma

(e/cm2)
Differential spectrum

(e/cm2 MeV)

0.1 1.878@12#b 1.227@13#

0.5 2.789@11# 1.047@12#

1.0 5.861@10# 1.661@11#

1.5 1.375@10# 4.082@10#

2.0 3.224@09# 8.685@09#

2.5 8.832@08# 2.409@09#

3.0 2.419@08# 4.678@08#

3.5 1.313@08# 1.278@08#

4.0 7.122@07# 1.074@08#

4.5 3.153@07# 4.899@07#

5.0 1.396@07# 2.868@07#

5.5 3.862@06# 1.092@07#

6.0 1.069@06# 2.194@06#

aThe integral spectrum is given for a period of one day. The integ
spectrum value at energyEi is defined as the integral spectru
between energiesEi and`.
bValue should be read as 1.87831012.
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shielding benchmark problems. We note that for the calcu
tion of the dose in a region deep within a multidimension
problem, the Monte Carlo method requires a large numbe
histories and often a corresponding large CPU time. We h
performed SP1 , SP3 , and SP7 calculations, using a 35
335 spatial mesh having the following cell widths in ea
material region: DAl,Si52.5431023 cm, Dw51.504
31023 cm. For the Monte Carlo calculation we have ru
23107 source electron histories. The EDR in the silicon
gion and the CPU times for both theSPN and Monte Carlo
calculations are given in Table IV.

Note from Table IV that the largest change in the solut
once again occurs betweenSP1 and SP3 , with a relatively
small change betweenSP3 and SP7 . The SP7 and Monte
Carlo results differ by 8%, with the Monte Carlo CPU tim
exceeding theSP7 CPU time by over two orders of magn
tude. TheSP7 solution significantly overshoots the Mon
Carlo solution. However, there is also a relatively large u
certainty of 8% in the Monte Carlo answer. Unfortunate
the current Monte Carlo calculation required over 9 h.
reduce the uncertainty to 4% would require an excessive
time of 37 h. It is certainly possible forSPN solutions to
overshoot the true solution. For instance, such oversh
have been observed in previous neutral-particleSPN studies
@15#. Since it was not practical to improve the Monte Ca
statistics by running more particles, we reduced the dim
sions of the problem so that an uncertainty of 2% could
achieved with only 53106 source histories. TheSP7 solu-
tion overshoots the Monte Carlo solution by about 7%

FIG. 4. Problem three: geometry.

TABLE III. Problem two: results.

EDR (MeV/cm3 s) CPU time

SP1 1.6731023 09 s
SP3 2.0231023 20 s
SP7 2.1131023 45 s
SP15 2.1431023 91 s
MC 2.263102363% 6 hr 4 min
-
l
of
ve

-

-
,

n

ts

n-
e

r

this modified problem. Thus the 8% overshoot observed
the original problem is probably real.

To confirm that this problem is a deep penetration pro
lem, we calculated the unshielded or free space dose to
silicon region. It was found to be 25.8 MeV/cm3 s while the
Monte Carlo calculation gave a shielded dose of 1
31022, indicating 3 orders of magnitude attenuation by t
shield. Thus the silicon region is indeed highly shielded.

The computational efficiency of theSPN code for prob-
lem three with various acceleration schemes and two dif
ent diffusion solvers is displayed in Table V. In this partic
lar calculation, the AMG scheme with a precondition
conjugate gradient~ICCG! diffusion solver@17# is shown to
be the most efficient. However, if the problem is sufficien
ill conditioned, the multigrid~BBMG! diffusion solver@18#
can surpass the conjugate gradient solver in efficiency.
later give an example of such a problem. We stress that
ICCG and BBMG methods are used to solve the source
eration equations@which take the form of diffusion equa
tions, i.e., see Eq.~13!# and are not to be confused with th
P1-DSA and AMG methods used to accelerate the sou
iterations.

D. Problem four

We have performed a series of calculations to further
vestigate the effectiveness of the angular multigrid meth
~AMG! when applied to 2DSPN calculations. In particular,
we compare the computational spectral radii of the 1D a
2D SPN methods with the computational spectral radius
the one-dimensionalSN method for one group problems wit
highly forward peaked Fokker-Planck scattering@8#. The 1D
problem consists of a homogeneous, nonabsorbing slab
is 10 transport mean free paths thick with an isotropic d
tributed source and vacuum boundary conditions on b
boundaries. The 2D problem used for the comparison re
sents a generalization of a 1D problem defined by Morel a
Manteuffel@8#. In particular, the 2D generalization was triv
ally obtained by making the problem domain a square
Cartesian geometry having the same length on each sid
the length of the 1D problem, with vacuum boundary con
tions prescribed at all boundaries.

TABLE IV. Problem three: results.

EDR (MeV/cm3 s) CPU time

SP1 1.6031022 63 s
SP3 1.9331022 138 s
SP7 1.9731022 286 s
MC 1.823102268% 9 h 22 min

TABLE V. Problem three:SPN acceleration scheme perfor
mance.

Acceleration scheme Matrix solver CPU time~s!

None ICCG 891
P1-DSA all groups ICCG 414
AMG e2 groups,P1-DSA g groups ICCG 286
AMG e2 groups,P1-DSA g groups MG 310
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6170 57J. A. JOSEF AND J. E. MOREL
The spectral radius can be computationally estimated
inner source iteration stepl as follows@8#:

r~ l 11!5S (nkufnk
~ l 11!2fnk

~ l !u2

(nkufnk
~ l !2fnk

~ l 21!u2D 1/2

, ~34!

where n and k represent the moment and spatial indic
respectively. The Legendre moments for the Fokker-Pla
scattering assumed in this problem are given by@8#

sn5
a

2
@N~N21!2n~n11!#, n50,1, . . . ,N21 ~35!

for an SPN calculation. Note that the expansion coefficien
depend upon the parameterN, i.e., anSP3 calculation uses
different expansion coefficients than anSP5 calculation.

As previously noted, theSPN equations are equivalent t
the SN11 equations in one dimension. However, theSPN
equations that we solve in 1D are equivalent to the 1D ev
parity form of theSN11 equations rather than the standa
first-order form solved in Morel and Manteuffel@8#. None-
theless, it can be shown that the source iteration proce
equivalent for both the even-parity and first-order forms
theSN equations@6#. Thus, we would expect to see the sam
spectral radius in 1DSPN calculations as in the 1DSN cal-
culations presented in Ref.@8#. Our previous Fourier analysi
@10# indicated that theP1 diffusion synthetic acceleration
scheme exhibits exactly the same effectiveness on 2DSPN
calculations that it does on 1DSPN calculations. This would
suggest that AMG should have the same effectiveness on
SPN calculations as 1DSN11 calculations. Finally, we wish
to remind the reader that both theP1-DSA and AMG meth-
ods are unstable~with sufficiently forward-peaked scatterin
and sufficiently small absorption! for 2D SN calculations, yet
are both very effective for one-dimensionalSN calculations.
The 2D generalization of the Morel-Manteuffel problem h
the required characteristics to make theP1-DSA and AMG
methods unstable when applied to theSN equations. The re-
sults of our investigation are given in Table VI. Note fro
Table VI that the 1D results are identical for theSN11 and
SPN calculations. Furthermore, the 1D and 2DSPN results
are identical. Therefore, we conclude that the angular mu
grid method exhibits exactly the same effectiveness on
SPN calculations that it does for 1DSPN calculations.

TABLE VI. Performance of angular multigrid and diffusio
synthetic methods.

Acceleration N
1D SN11

Spectral radius
1D SPN

Spectral radius
2D SPN

Spectral radius

AMG 3 0.36 0.35 0.35
P1-DSA 3 0.36 0.35 0.35
AMG 7 0.47 0.47 0.47
P1-DSA 7 0.81 0.81 0.82
AMG 15 0.54 0.54 0.54
P1-DSA 15 0.95 0.95 0.95
at

,
k

n-

is
f

D

i-
D

E. Test problem five

The fifth problem is a 2D,R-Z geometry, three region
problem with a void region. The problem geometry is sho
in Fig. 5. This geometry-source configuration is characte
tic of the satellite shielding benchmark problems defined
Saquiet al. @23#. Void regions~which are actually modeled
as extremely dilute gases! result in highly ill-conditioned
source iteration equations. Thus this is a very difficult pro
lem to efficiently solve. Note from Fig. 5 that each regio
represents a coaxial cylinder of uniform composition. A ge
synchronous trapped electron source is again incident a
the outer periphery. We have performedP1 , P3 , and P7
calculations using a 35335 spatial mesh with nonuniform
spacing~DAl,Si52.6731023 cm, DW54.031023 cm!. Low
density nitrogen gas (1027 g/cm3) was used to simulate th
void region in theSPN calculation, while the Monte Carlo
method allows the explicit modeling of a void. For th
Monte Carlo calculation we ran 23106 source electron his-
tories. The calculated EDR in the inner aluminum region
given for both the Monte Carlo andSPN calculations in
Table VII together with CPU times.

It can be seen from Table VII that theSP7 and Monte
Carlo values for the EDR in the aluminum are nearly ide
tical, and the CPU time for theSP7 calculation is about
one-sixth that of the Monte Carlo calculation. TheSPN cal-
culations were performed using the black-box multigrid@18#
method to solve the source iteration equations. When
attempted to perform theSP7 calculation using the ICCG
solver, the convergence rate was so slow that the calcula
had to be terminated. Thus we see that voids can be succ

FIG. 5. Problem five: geometry.

TABLE VII. Problem five: results.

EDR (MeV/cm3 s) CPU time~s!

SP1 2.17 225
SP3 2.20 305
SP7 2.24 490
MC 2.2561% 3193
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fully modeled with a dilute gas, and the BBMG method is f
superior to the ICCG method if the problem has highly
conditioned source iteration equations. However, one sho
remember from problem three that the ICCG method can
more efficient than the BBMG method if the source iterati
equations are well conditioned.

VIII. CONCLUSIONS

Our results clearly indicate thatSPN method is a valuable
alternative to full deterministic and Monte Carlo transp
methods for coupled electron-photon space shielding ca
lations. For the representative problems we considered,
SP7 approximation appears to be adequate, and gives re
that are within 10% of Monte Carlo results. This level
accuracy is considered acceptable for engineering app
tions. As one might expect from the asymptotic nature of
SPN equations, increasing the order of the approximat
does not always improve the accuracy of the solution. Ho
ever, neither does it appear to result in a serious increas
error. TheSPN method was clearly very much more efficie
than the Monte Carlo method for the problems that w
considered, but it is important to recognize that the Mo
Carlo method was not biased. As previously discussed,
phisticated variance reduction techniques required for sp
shielding calculations are not available to the casual use
the CYLTRAN code @11#. Thus we could not investigate th
effect of biasing on the efficiency ofCYLTRAN. Ideally, we
would have preferred to compare computational efficien
with a deterministic transport method, but as previou
stated, 2D deterministic transport codes for coupled elect
photon calculations are not yet available to the commun
Nonetheless, the lower cost of theSPN method relative to
0,
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the SN method is reasonably well established for neutr
transport calculations@15#. One would expect similar relative
efficiencies in coupled electron-photon space shielding
culations. Overall, it would appear to us that coupl
electron-photon space shielding calculations represent
ideal application for theSPN method. This is not unexpecte
from a theoretical viewpoint. The isotropic bath of electro
surrounding the satellite strongly contributes to a solut
that is almost locally 1D.

One of the surprising results of our study is that t
P1-DSA and AMG convergence acceleration methods ret
their 1D effectiveness in 2DSPN calculations, even though
they can lose their effectiveness in 2DSN equations. Indeed
these methods can actually become unstable when applie
theSN equations under the conditions present in the coup
electron-photon transport calculations that we performed

Finally, we note that we have demonstrated that void
gions can be successively modeled with extremely dil
gases. However, the presence of void regions can resu
ill-conditioned source iteration equations that require a m
tigrid diffusion solver such as BBMG@18#. The conjugate-
gradient method could certainly be used for such equation
a multigrid preconditioner is used, but nonmultigrid preco
ditioners such as the incomplete Cholesky method sho
generally be inadequate for problems with voids. On
other hand, if voids are not present, the ICCG method@17#
can be more efficient than the BBMG method.

In the future, we intend to investigate the application
theSPN method to 3D coupled electron-photon space shie
ing problems. Furthermore, we intend to investigate the
of 3D adjoint SPN calculations to bias coupled electron
photon Monte Carlo calculations.
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